| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in the ATA over Ethernet (AoE) driver in the Linux kernel. The aoecmd_cfg_pkts() function improperly updates the refcnt on `struct net_device`, and a use-after-free can be triggered by racing between the free on the struct and the access through the `skbtxq` global queue. This could lead to a denial of service condition or potential code execution. |
| A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate. |
| An array indexing vulnerability was found in the netfilter subsystem of the Linux kernel. A missing macro could lead to a miscalculation of the `h->nets` array offset, providing attackers with the primitive to arbitrarily increment/decrement a memory buffer out-of-bound. This issue may allow a local user to crash the system or potentially escalate their privileges on the system. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: add bounds check for create lease context
Add missing bounds check for create lease context. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: limit repeated connections from clients with the same IP
Repeated connections from clients with the same IP address may exhaust
the max connections and prevent other normal client connections.
This patch limit repeated connections from clients with the same IP. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: prevent out-of-bounds stream writes by validating *pos
ksmbd_vfs_stream_write() did not validate whether the write offset
(*pos) was within the bounds of the existing stream data length (v_len).
If *pos was greater than or equal to v_len, this could lead to an
out-of-bounds memory write.
This patch adds a check to ensure *pos is less than v_len before
proceeding. If the condition fails, -EINVAL is returned. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: Fix dangling pointer in krb_authenticate
krb_authenticate frees sess->user and does not set the pointer
to NULL. It calls ksmbd_krb5_authenticate to reinitialise
sess->user but that function may return without doing so. If
that happens then smb2_sess_setup, which calls krb_authenticate,
will be accessing free'd memory when it later uses sess->user. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix the warning from __kernel_write_iter
[ 2110.972290] ------------[ cut here ]------------
[ 2110.972301] WARNING: CPU: 3 PID: 735 at fs/read_write.c:599 __kernel_write_iter+0x21b/0x280
This patch doesn't allow writing to directory. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: use aead_request_free to match aead_request_alloc
Use aead_request_free() instead of kfree() to properly free memory
allocated by aead_request_alloc(). This ensures sensitive crypto data
is zeroed before being freed. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: Fix MAC comparison to be constant-time
To prevent timing attacks, MACs need to be compared in constant time.
Use the appropriate helper function for this. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: linearize cloned gso packets in sctp_rcv
A cloned head skb still shares these frag skbs in fraglist with the
original head skb. It's not safe to access these frag skbs.
syzbot reported two use-of-uninitialized-memory bugs caused by this:
BUG: KMSAN: uninit-value in sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_assoc_bh_rcv+0x1a7/0xc50 net/sctp/associola.c:998
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x397/0xdb0 net/sctp/input.c:331
sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1122
__release_sock+0x1da/0x330 net/core/sock.c:3106
release_sock+0x6b/0x250 net/core/sock.c:3660
sctp_wait_for_connect+0x487/0x820 net/sctp/socket.c:9360
sctp_sendmsg_to_asoc+0x1ec1/0x1f00 net/sctp/socket.c:1885
sctp_sendmsg+0x32b9/0x4a80 net/sctp/socket.c:2031
inet_sendmsg+0x25a/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:718 [inline]
and
BUG: KMSAN: uninit-value in sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_inq_push+0x2a3/0x350 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x3c7/0xda0 net/sctp/input.c:331
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
sctp_wait_for_connect+0x458/0x820 net/sctp/socket.c:9367
sctp_sendmsg_to_asoc+0x223a/0x2260 net/sctp/socket.c:1886
sctp_sendmsg+0x3910/0x49f0 net/sctp/socket.c:2032
inet_sendmsg+0x269/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
This patch fixes it by linearizing cloned gso packets in sctp_rcv(). |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Add NULL check in uclogic_input_configured()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
uclogic_input_configured() does not check for this case, which results
in a NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: init wiphy_work before allocating rfkill fails
syzbort reported a uninitialize wiphy_work_lock in cfg80211_dev_free. [1]
After rfkill allocation fails, the wiphy release process will be performed,
which will cause cfg80211_dev_free to access the uninitialized wiphy_work
related data.
Move the initialization of wiphy_work to before rfkill initialization to
avoid this issue.
[1]
INFO: trying to register non-static key.
The code is fine but needs lockdep annotation, or maybe
you didn't initialize this object before use?
turning off the locking correctness validator.
CPU: 0 UID: 0 PID: 5935 Comm: syz-executor550 Not tainted 6.14.0-rc6-syzkaller-00103-g4003c9e78778 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
assign_lock_key kernel/locking/lockdep.c:983 [inline]
register_lock_class+0xc39/0x1240 kernel/locking/lockdep.c:1297
__lock_acquire+0x135/0x3c40 kernel/locking/lockdep.c:5103
lock_acquire.part.0+0x11b/0x380 kernel/locking/lockdep.c:5851
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x3a/0x60 kernel/locking/spinlock.c:162
cfg80211_dev_free+0x30/0x3d0 net/wireless/core.c:1196
device_release+0xa1/0x240 drivers/base/core.c:2568
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x1e4/0x5a0 lib/kobject.c:737
put_device+0x1f/0x30 drivers/base/core.c:3774
wiphy_free net/wireless/core.c:1224 [inline]
wiphy_new_nm+0x1c1f/0x2160 net/wireless/core.c:562
ieee80211_alloc_hw_nm+0x1b7a/0x2260 net/mac80211/main.c:835
mac80211_hwsim_new_radio+0x1d6/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5185
hwsim_new_radio_nl+0xb42/0x12b0 drivers/net/wireless/virtual/mac80211_hwsim.c:6242
genl_family_rcv_msg_doit+0x202/0x2f0 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x565/0x800 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x16b/0x440 net/netlink/af_netlink.c:2533
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline]
netlink_unicast+0x53c/0x7f0 net/netlink/af_netlink.c:1338
netlink_sendmsg+0x8b8/0xd70 net/netlink/af_netlink.c:1882
sock_sendmsg_nosec net/socket.c:718 [inline]
__sock_sendmsg net/socket.c:733 [inline]
____sys_sendmsg+0xaaf/0xc90 net/socket.c:2573
___sys_sendmsg+0x135/0x1e0 net/socket.c:2627
__sys_sendmsg+0x16e/0x220 net/socket.c:2659
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
Close: https://syzkaller.appspot.com/bug?extid=aaf0488c83d1d5f4f029 |
| A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process.
A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: as73211: Ensure buffer holes are zeroed
Given that the buffer is copied to a kfifo that ultimately user space
can read, ensure we zero it. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix handling of zero-length records on the rx_list
Each recvmsg() call must process either
- only contiguous DATA records (any number of them)
- one non-DATA record
If the next record has different type than what has already been
processed we break out of the main processing loop. If the record
has already been decrypted (which may be the case for TLS 1.3 where
we don't know type until decryption) we queue the pending record
to the rx_list. Next recvmsg() will pick it up from there.
Queuing the skb to rx_list after zero-copy decrypt is not possible,
since in that case we decrypted directly to the user space buffer,
and we don't have an skb to queue (darg.skb points to the ciphertext
skb for access to metadata like length).
Only data records are allowed zero-copy, and we break the processing
loop after each non-data record. So we should never zero-copy and
then find out that the record type has changed. The corner case
we missed is when the initial record comes from rx_list, and it's
zero length. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix slab-out-of-bounds in hfs_bnode_read()
This patch introduces is_bnode_offset_valid() method that checks
the requested offset value. Also, it introduces
check_and_correct_requested_length() method that checks and
correct the requested length (if it is necessary). These methods
are used in hfs_bnode_read(), hfs_bnode_write(), hfs_bnode_clear(),
hfs_bnode_copy(), and hfs_bnode_move() with the goal to prevent
the access out of allocated memory and triggering the crash. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_uni2asc()
The hfsplus_readdir() method is capable to crash by calling
hfsplus_uni2asc():
[ 667.121659][ T9805] ==================================================================
[ 667.122651][ T9805] BUG: KASAN: slab-out-of-bounds in hfsplus_uni2asc+0x902/0xa10
[ 667.123627][ T9805] Read of size 2 at addr ffff88802592f40c by task repro/9805
[ 667.124578][ T9805]
[ 667.124876][ T9805] CPU: 3 UID: 0 PID: 9805 Comm: repro Not tainted 6.16.0-rc3 #1 PREEMPT(full)
[ 667.124886][ T9805] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 667.124890][ T9805] Call Trace:
[ 667.124893][ T9805] <TASK>
[ 667.124896][ T9805] dump_stack_lvl+0x10e/0x1f0
[ 667.124911][ T9805] print_report+0xd0/0x660
[ 667.124920][ T9805] ? __virt_addr_valid+0x81/0x610
[ 667.124928][ T9805] ? __phys_addr+0xe8/0x180
[ 667.124934][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124942][ T9805] kasan_report+0xc6/0x100
[ 667.124950][ T9805] ? hfsplus_uni2asc+0x902/0xa10
[ 667.124959][ T9805] hfsplus_uni2asc+0x902/0xa10
[ 667.124966][ T9805] ? hfsplus_bnode_read+0x14b/0x360
[ 667.124974][ T9805] hfsplus_readdir+0x845/0xfc0
[ 667.124984][ T9805] ? __pfx_hfsplus_readdir+0x10/0x10
[ 667.124994][ T9805] ? stack_trace_save+0x8e/0xc0
[ 667.125008][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125015][ T9805] ? trace_lock_acquire+0x85/0xd0
[ 667.125022][ T9805] ? lock_acquire+0x30/0x80
[ 667.125029][ T9805] ? iterate_dir+0x18b/0xb20
[ 667.125037][ T9805] ? down_read_killable+0x1ed/0x4c0
[ 667.125044][ T9805] ? putname+0x154/0x1a0
[ 667.125051][ T9805] ? __pfx_down_read_killable+0x10/0x10
[ 667.125058][ T9805] ? apparmor_file_permission+0x239/0x3e0
[ 667.125069][ T9805] iterate_dir+0x296/0xb20
[ 667.125076][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.125084][ T9805] ? __pfx___x64_sys_getdents64+0x10/0x10
[ 667.125091][ T9805] ? __x64_sys_openat+0x141/0x200
[ 667.125126][ T9805] ? __pfx_filldir64+0x10/0x10
[ 667.125134][ T9805] ? do_user_addr_fault+0x7fe/0x12f0
[ 667.125143][ T9805] do_syscall_64+0xc9/0x480
[ 667.125151][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.125158][ T9805] RIP: 0033:0x7fa8753b2fc9
[ 667.125164][ T9805] Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 48
[ 667.125172][ T9805] RSP: 002b:00007ffe96f8e0f8 EFLAGS: 00000217 ORIG_RAX: 00000000000000d9
[ 667.125181][ T9805] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa8753b2fc9
[ 667.125185][ T9805] RDX: 0000000000000400 RSI: 00002000000063c0 RDI: 0000000000000004
[ 667.125190][ T9805] RBP: 00007ffe96f8e110 R08: 00007ffe96f8e110 R09: 00007ffe96f8e110
[ 667.125195][ T9805] R10: 0000000000000000 R11: 0000000000000217 R12: 0000556b1e3b4260
[ 667.125199][ T9805] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 667.125207][ T9805] </TASK>
[ 667.125210][ T9805]
[ 667.145632][ T9805] Allocated by task 9805:
[ 667.145991][ T9805] kasan_save_stack+0x20/0x40
[ 667.146352][ T9805] kasan_save_track+0x14/0x30
[ 667.146717][ T9805] __kasan_kmalloc+0xaa/0xb0
[ 667.147065][ T9805] __kmalloc_noprof+0x205/0x550
[ 667.147448][ T9805] hfsplus_find_init+0x95/0x1f0
[ 667.147813][ T9805] hfsplus_readdir+0x220/0xfc0
[ 667.148174][ T9805] iterate_dir+0x296/0xb20
[ 667.148549][ T9805] __x64_sys_getdents64+0x13c/0x2c0
[ 667.148937][ T9805] do_syscall_64+0xc9/0x480
[ 667.149291][ T9805] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 667.149809][ T9805]
[ 667.150030][ T9805] The buggy address belongs to the object at ffff88802592f000
[ 667.150030][ T9805] which belongs to the cache kmalloc-2k of size 2048
[ 667.151282][ T9805] The buggy address is located 0 bytes to the right of
[ 667.151282][ T9805] allocated 1036-byte region [ffff88802592f000, ffff88802592f40c)
[ 667.1
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: don't use BUG_ON() in hfsplus_create_attributes_file()
When the volume header contains erroneous values that do not reflect
the actual state of the filesystem, hfsplus_fill_super() assumes that
the attributes file is not yet created, which later results in hitting
BUG_ON() when hfsplus_create_attributes_file() is called. Replace this
BUG_ON() with -EIO error with a message to suggest running fsck tool. |