| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| MariaDB mariadb-dump Utility Directory Traversal Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of MariaDB. Interaction with the mariadb-dump utility is required to exploit this vulnerability but attack vectors may vary depending on the implementation.
The specific flaw exists within the handling of view names. The issue results from the lack of proper validation of a user-supplied path prior to using it in file operations. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27000. |
| DreamFactory saveZipFile Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of DreamFactory. Authentication is required to exploit this vulnerability.
The specific flaw exists within the implementation of the saveZipFile method. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-26589. |
| Tencent FaceDetection-DSFD resnet Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent FaceDetection-DSFD. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the resnet endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27197. |
| The Print Invoice & Delivery Notes for WooCommerce plugin for WordPress is vulnerable to Remote Code Execution in all versions up to, and including, 5.8.0 via the 'WooCommerce_Delivery_Notes::update' function. This is due to missing capability check in the 'WooCommerce_Delivery_Notes::update' function, PHP enabled in Dompdf, and missing escape in the 'template.php' file. This makes it possible for unauthenticated attackers to execute code on the server. |
| TradingView Desktop Electron Uncontrolled Search Path Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of TradingView Desktop. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the configuration of the Electron framework. The product loads a script file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of a target user. Was ZDI-CAN-27395. |
| Hugging Face Diffusers CogView4 Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Diffusers. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27424. |
| Hugging Face Accelerate Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face Accelerate. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of checkpoints. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27985. |
| Hugging Face smolagents Remote Python Executor Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Hugging Face smolagents. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the parsing of pickle data. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28312. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: hfcsusb: fix memory leak in hfcsusb_probe()
In hfcsusb_probe(), the memory allocated for ctrl_urb gets leaked when
setup_instance() fails with an error code. Fix that by freeing the urb
before freeing the hw structure. Also change the error paths to use the
goto ladder style.
Compile tested only. Issue found using a prototype static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of urbs in ath9k_hif_usb_dealloc_tx_urbs()
Syzkaller reports a long-known leak of urbs in
ath9k_hif_usb_dealloc_tx_urbs().
The cause of the leak is that usb_get_urb() is called but usb_free_urb()
(or usb_put_urb()) is not called inside usb_kill_urb() as urb->dev or
urb->ep fields have not been initialized and usb_kill_urb() returns
immediately.
The patch removes trying to kill urbs located in hif_dev->tx.tx_buf
because hif_dev->tx.tx_buf is not supposed to contain urbs which are in
pending state (the pending urbs are stored in hif_dev->tx.tx_pending).
The tx.tx_lock is acquired so there should not be any changes in the list.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: hold region lock when flushing snapshots
Netdevsim triggers a splat on reload, when it destroys regions
with snapshots pending:
WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140
CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580
RIP: 0010:devlink_region_snapshot_del+0x12e/0x140
Call Trace:
<TASK>
devl_region_destroy+0x70/0x140
nsim_dev_reload_down+0x2f/0x60 [netdevsim]
devlink_reload+0x1f7/0x360
devlink_nl_cmd_reload+0x6ce/0x860
genl_family_rcv_msg_doit.isra.0+0x145/0x1c0
This is the locking assert in devlink_region_snapshot_del(),
we're supposed to be holding the region->snapshot_lock here. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: visconti: Fix memory leak in visconti_register_pll()
@pll->rate_table has allocated memory by kmemdup(), if clk_hw_register()
fails, it should be freed, otherwise it will cause memory leak issue,
this patch fixes it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921e: fix rmmod crash in driver reload test
In insmod/rmmod stress test, the following crash dump shows up immediately.
The problem is caused by missing mt76_dev in mt7921_pci_remove(). We
should make sure the drvdata is ready before probe() finished.
[168.862789] ==================================================================
[168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480
[168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361
[168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1
[168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020
[168.862820] Call Trace:
[168.862822] <TASK>
[168.862825] dump_stack_lvl+0x49/0x63
[168.862832] print_report.cold+0x493/0x6b7
[168.862845] kasan_report+0xa7/0x120
[168.862857] kasan_check_range+0x163/0x200
[168.862861] __kasan_check_write+0x14/0x20
[168.862866] try_to_grab_pending+0x59/0x480
[168.862870] __cancel_work_timer+0xbb/0x340
[168.862898] cancel_work_sync+0x10/0x20
[168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e]
[168.862909] pci_device_remove+0xa3/0x1d0
[168.862914] device_remove+0xc4/0x170
[168.862920] device_release_driver_internal+0x163/0x300
[168.862925] driver_detach+0xc7/0x1a0
[168.862930] bus_remove_driver+0xeb/0x2d0
[168.862935] driver_unregister+0x71/0xb0
[168.862939] pci_unregister_driver+0x30/0x230
[168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e]
[168.862949] __x64_sys_delete_module+0x2f9/0x4b0
[168.862968] do_syscall_64+0x38/0x90
[168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Test steps:
1. insmode
2. do not ifup
3. rmmod quickly (within 1 second) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix pci device refcount leak
As comment of pci_get_domain_bus_and_slot() says, it returns
a pci device with refcount increment, when finish using it,
the caller must decrement the reference count by calling
pci_dev_put().
So before returning from amdgpu_device_resume|suspend_display_audio(),
pci_dev_put() is called to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg
The calling convention for pre_slave_sg is to return NULL on error and
provide an error log to the system. Qcom-adm instead provide error
pointer when an error occur. This indirectly cause kernel panic for
example for the nandc driver that checks only if the pointer returned by
device_prep_slave_sg is not NULL. Returning an error pointer makes nandc
think the device_prep_slave_sg function correctly completed and makes
the kernel panics later in the code.
While nandc is the one that makes the kernel crash, it was pointed out
that the real problem is qcom-adm not following calling convention for
that function.
To fix this, drop returning error pointer and return NULL with an error
log. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ipu3-imgu: Fix NULL pointer dereference in active selection access
What the IMGU driver did was that it first acquired the pointers to active
and try V4L2 subdev state, and only then figured out which one to use.
The problem with that approach and a later patch (see Fixes: tag) is that
as sd_state argument to v4l2_subdev_get_try_crop() et al is NULL, there is
now an attempt to dereference that.
Fix this.
Also rewrap lines a little. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: fix memory leak in bnxt_nvm_test()
Free the kzalloc'ed buffer before returning in the success path. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: core: fix resource leak in regulator_register()
I got some resource leak reports while doing fault injection test:
OF: ERROR: memory leak, expected refcount 1 instead of 100,
of_node_get()/of_node_put() unbalanced - destroy cset entry:
attach overlay node /i2c/pmic@64/regulators/buck1
unreferenced object 0xffff88810deea000 (size 512):
comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s)
hex dump (first 32 bytes):
00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N..........
ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................
backtrace:
[<00000000d78541e2>] kmalloc_trace+0x21/0x110
[<00000000b343d153>] device_private_init+0x32/0xd0
[<00000000be1f0c70>] device_add+0xb2d/0x1030
[<00000000e3e6344d>] regulator_register+0xaf2/0x12a0
[<00000000e2f5e754>] devm_regulator_register+0x57/0xb0
[<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator]
unreferenced object 0xffff88810b617b80 (size 32):
comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s)
hex dump (first 32 bytes):
72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S
55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+...
backtrace:
[<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0
[<0000000025c6a4e5>] kstrdup+0x3a/0x70
[<00000000790efb69>] create_regulator+0xc0/0x4e0
[<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440
[<0000000045796214>] regulator_register+0x10b3/0x12a0
[<00000000e2f5e754>] devm_regulator_register+0x57/0xb0
[<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator]
After calling regulator_resolve_supply(), the 'rdev->supply' is set
by set_supply(), after this set, in the error path, the resources
need be released, so call regulator_put() to avoid the leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init()
KASAN reports a use-after-free:
BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core]
Call Trace:
...
dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core]
vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge]
platform_probe+0xb6/0x170
...
Allocated by task 1238:
...
dvb_register_device+0x1a7/0xa70 [dvb_core]
dvb_dmxdev_init+0x2af/0x4a0 [dvb_core]
vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge]
...
Freed by task 1238:
dvb_register_device+0x6d2/0xa70 [dvb_core]
dvb_dmxdev_init+0x2af/0x4a0 [dvb_core]
vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge]
...
It is because the error handling in vidtv_bridge_dvb_init() is wrong.
First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but
goto fail_dmx(_dev): calls release functions again, which causes
use-after-free.
Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause
out-of-bound when i finished its loop (i == NUM_FE). And the loop
releasing is wrong, although now NUM_FE is 1 so it won't cause problem.
Fix this by correctly releasing everything. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix possible use-after-free in async command interface
mlx5_cmd_cleanup_async_ctx should return only after all its callback
handlers were completed. Before this patch, the below race between
mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and
lead to a use-after-free:
1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e.
elevated by 1, a single inflight callback).
2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1.
3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and
is about to call wake_up().
4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns
immediately as the condition (num_inflight == 0) holds.
5. mlx5_cmd_cleanup_async_ctx returns.
6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx
object.
7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed
object.
Fix it by syncing using a completion object. Mark it completed when
num_inflight reaches 0.
Trace:
BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270
Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0
CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x57/0x7d
print_report.cold+0x2d5/0x684
? do_raw_spin_lock+0x23d/0x270
kasan_report+0xb1/0x1a0
? do_raw_spin_lock+0x23d/0x270
do_raw_spin_lock+0x23d/0x270
? rwlock_bug.part.0+0x90/0x90
? __delete_object+0xb8/0x100
? lock_downgrade+0x6e0/0x6e0
_raw_spin_lock_irqsave+0x43/0x60
? __wake_up_common_lock+0xb9/0x140
__wake_up_common_lock+0xb9/0x140
? __wake_up_common+0x650/0x650
? destroy_tis_callback+0x53/0x70 [mlx5_core]
? kasan_set_track+0x21/0x30
? destroy_tis_callback+0x53/0x70 [mlx5_core]
? kfree+0x1ba/0x520
? do_raw_spin_unlock+0x54/0x220
mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core]
? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core]
? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core]
mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core]
? dump_command+0xcc0/0xcc0 [mlx5_core]
? lockdep_hardirqs_on_prepare+0x400/0x400
? cmd_comp_notifier+0x7e/0xb0 [mlx5_core]
cmd_comp_notifier+0x7e/0xb0 [mlx5_core]
atomic_notifier_call_chain+0xd7/0x1d0
mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core]
atomic_notifier_call_chain+0xd7/0x1d0
? irq_release+0x140/0x140 [mlx5_core]
irq_int_handler+0x19/0x30 [mlx5_core]
__handle_irq_event_percpu+0x1f2/0x620
handle_irq_event+0xb2/0x1d0
handle_edge_irq+0x21e/0xb00
__common_interrupt+0x79/0x1a0
common_interrupt+0x78/0xa0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40
RIP: 0010:default_idle+0x42/0x60
Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00
RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242
RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110
RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc
RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3
R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005
R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000
? default_idle_call+0xcc/0x450
default_idle_call+0xec/0x450
do_idle+0x394/0x450
? arch_cpu_idle_exit+0x40/0x40
? do_idle+0x17/0x450
cpu_startup_entry+0x19/0x20
start_secondary+0x221/0x2b0
? set_cpu_sibling_map+0x2070/0x2070
secondary_startup_64_no_verify+0xcd/0xdb
</TASK>
Allocated by task 49502:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
kvmalloc_node+0x48/0xe0
mlx5e_bulk_async_init+0x35/0x110 [mlx5_core]
mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core]
mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core]
mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core]
mlx5e_detach_netdev+0x1c
---truncated--- |